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This paper gives a counterexample that the strong unicity fails for best monotone
approximation by reciprocals of polynomials and establishes the strong unicity of
order 1/2 for some class of functions.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Let C[a, b] denote the space of all real continuous functions defined on
an interval [a, ] with the uniform norm. For a function fin C[aq, ], the
best approximation of f by a family of monotone functions has been
studied by many authors (see [ 1-4]). In paper [4], the approximation by
monotone reciprocals of polynomials was considered. The approximation
problem, which was presentrd by G. D. Taylor, is the first step for studying
the approximation by monotone rationals. The characterization and
unicity theorems were given in [4]. It is already known that strong unicity
of the best approximation is related to the Lipschitz conditions for the best
approximation operators. In this paper, we consider the strong unicity of
the best monotone approximation by reciprocals of polynomials. In Sec-
tion 2, at first, we give a counterexample for which the strong unicity fails;
and second, in Sections 3 and 4, the unicity for some class of functions and
strong unicity of order 1/2 are established, respectively.
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Let 7, denote the set of real algebraic polynomials of degree n or less.
Define

R,={r=d/p:pemn,, p(x}>0forall xin [a, b], d=+1 or 0}
R¥={reR:r(x)=0for all xin [a, b]}.

For fe Cla, b), if rye R satishies
Nf=rl =inf{{|f —r|:re R¥}

then r, is called a best monotone approximation of f by reciprocals of
polynomials. From [4], for any fe C[a, b], the best approximation to f
exists.
Remark. (1) If n=0or fe R}, the best approximation to f'is strongly
unique
(2) feCla,b] satisfies max{f(x): xe[a, b]} = —min{f(x): x€e
[a, b1} if and only if the best approximation of fin R¥ is r,=0 (see [4]
or observe this directly by the characterization of [6]). In this case, r,=0
is not strongly unique in general. For example, let

[ —1/4, x=0
—[(n+6)/(n+2)] x— 1/4, O<x<1/2
—3/4—2/(n+2), x=1/2
f"(x)=<3n2+lln+6 N 3 2
m(x—z>"z—n+z 12<x<1
\3/4—1/(n+1), x=1
(—1/4, x=0
—x—1/4, 0<x<1/2
Solx)=< —3/4, x=1/2
3(x—1/2)+3/4, 12<x<l
k3/4, x=1

r,(x)=—1/(nx+1), xe[0,1]; ro=0, xe [0, 1].

Then for any n=1,2,..,r, is a best approximation to f, in R,. Since
r,€ RX, r, is also a best approximation to f, in R¥. On the other hand, r,
is also a best approximation to fin RX. Since f,, — f, but r, +ry, ry is not
strongly unique.

By the above remarks, without loss of generality, we can assume that
n=1,feC[a, b]1\R¥ and max(f(x): xe [a, b]} # —min{ f(x): xe [a, b]}
in the following.
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2. CHARACTERIZATION AND COUNTEREXAMPLE
The following is given in [4]:

THEOREM A. feCla, b]\RY, r,=d/p, (d=1 or —1) is a best
approximation to f in RY if and only if there is no element q e n, such that
sign g(x) =sign[ f(x)—r/(x)],  xed(f r)
q,(x)>0a XEB(r_I)7

where

A(firg={xela,b]: I f —rd = 1f(x)—rx)|}
B(r;)={xe[a, b]:r'(x)=0}.

For convenience, we define the notations

S ={o(x)(1, x, ., x"): x€ A(f, rf)}
S,=1{(0,1,2x, .., nx"""): xe B(r/)},

where a(x)=sign[ f(x)—r (x)].

THEOREM 2.1. fe C[a, b]\RY, max{f(x):x e [a, b]} # —min{f(x):
xe[a, bl}, rre RY, and the following are equivalent to each other:

(1) rgis a best approximation to f in RY.
(2) Oeco(S,vS,).

(c) There are xy, ... X,€ A(f, 77, ¥1» ., Yu € B(rf), and a,>0, ;>0
(i=1,2,.,m;j=1,2 .., k) such that for any pen,

m

k
Z a;0(x,;) p{x;)+ Z ﬁjpl(yj)zo (1)
=1 J=1
and in addition, m+ 2k —ez=n+2, mz 1, where e is the number of points in
{a, by {31y ey Vi)

Proof. By the “Linear Inequality Theorem” of [6] and Theorem A, the
equivalence of (1) and (2) is obtained easily.

As to the equivalence of (2) and (3), what we need to do is to prove that
m=1and m+ 2k —ez=n+ 2. Clearly, m>1 is true. In fact, if otherwise we
would have that for any /'€ C[a, b]1\R}, r, was also a best approximation
to f', which, obviously, is a contradiction. Now let’s prove that
m+2k—ez=zn+2. Set

H=(a, b)ﬁ [{ylv s yk}\{xl’ v xm}]
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and let s be the number of points in H. Without loss of generality, assume
that H=1{y,, .., y,}. If we can prove that m+ k +s=n+2 then

m+2k—ezm+k+szn+?2

and thus we complete the proof.

Suppose that K=m+k +s<n+ 1, then (1) implies

where y, =0, for v=1, 2, .., 5. Let C denote the coefficient matrix of (2) in
the view of o;0(x;), 7,, B, being unknown numbers for i=1,2,..,m,
v=12,.,s5 j=1,2,.,k, then C is the matrix of the following Birkhoff
interpolation problem. Find g € n, satisfying

K3 k
wa(x)xi+ Y 3,00+ Y By T'=0, =01, K (2)
v=1

i=1 J=1

q('xi)=ais 1:1, 2, ey m
q(y.)=b,, v=1,2,..,s (3)
qg(y)=c; j=1,2, ..,k

Since, in interpolation problem (3), the points where the interpolation con-
dition on g’ can occur without a corresponding condition on ¢ are at most
the points a and b, the incidence matrix of the above Birkhoff interpolation
problem satisfies the Polya condition. Moreover, the incidence matrix has
no support sequence, hence the incidence matrix is order normal by [7].
This implies that (3) has a unique solution in n,. So (2) has only the zero
solution, which is a contradiction.

ExaMpLE 2.1 (Best Approximation Which Is Not Strongly Unique).
Define

prx)= —(x—1./3)P +¢, xe[—1,1]
f(x)zl/z_xz_i—[pf(x)]il’ XE[-],]],

where ¢ is a constant with

min] pf(x)zﬁ.

[-t1

Then r,=1/pe R¥ is a best approximation to f.
In fact, | f—rd =1/2 and

Alfr)={-1,0,1};  Blry={1//3}
o(—1)=—=1, ¢0)=1, o(l)=—1.
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It is easy to check that

(2=/3) a(=1) p(—1) +45(0) p(0)
+(2+/3) (1) p(1)+2/3 p'(1/4/3) =0
for plx)= 1, x, x?, x*. By Theorem 2.1, r, is a best approximation to f
" l{}osr‘ sufficiently small o >0, set

px)=p(x)—ax[x’~(1-a)], xe[—L 1]

Then p, <0 for all x in [-1,1] and r,=1/p, € R¥. Since p, —» p, when
o — 0, there is a M >0 such that

1< pa(x) pAx) < M

for any xe [ —1, 1] and sufficiently small a > 0.

Claim 1. For sufficiently small « >0,

e — rpll = 20(1 —)*?/M3%2,
In fact, by [2, Sect. 2, Claim II]

22— pAl =2/3%*[a(1 — 2)**]

which implies that

a1 —o)>2

1
hre=rdl Z2—llp.— pl =
M YN

Claim II. For sufficiently small « > 0,
If=rall <3+
Proof. The following was proved in [2]:
14— x*{ —ax[x*~ (1 —2)]}| =L+ a2 (4)
For any xe[—1,1]

LS} = re (o)l =15~ x* + { —ax[x® — (1 = ) pAx) p,(x)}].
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If 1/2—x? and —ax[x*— (1 — )] have the same sign, then

[£(x) = r, ()l

13— x| + | —ox[x? — (1 = 2) 1/p,(x) pa(x)]
=22 + | —ax[x® — (1~ )]
|42 — o[ = (1 —a)]|

+ a2

A

A
=

If 1/2—x? and —ax[x?— (1 —a)] have different signs, since

l_

3= %% 2 —ax[x® = (1 = ) }/py(x) py(x)]
Lf(x) = r (0] = 13— x* = | —ax[x? — (1 = ) Yp, ) p.(x)]
SP-XI<i+o?
holds for sufficiently small o > 0, the proof of Claim II is complete.

Now from Claim I and Claim IT
LS = ral = W= r A3/l =l < 3°2Mo/[2(1 —2)*2] > 0

when a — 0. Hence r, is not strongly unique.

3. STrRONG UNICITY FOR SOME CLASSES

Lemma 3.1, If re R} is a best approximation to f, and q € m,, satisfies

(1) g(x)o(x)=0 for any xe A(f, r,),
(2) q'(x)=0 for any xe B(r,),
(3) xel(a, b)yn B(r,) and q'(x)=0 implies q"(x) =0;

or if it satisfies (1), (2), and
(3') 1<dp,<2
then g =0, where Op, means the degree of p,.

Proof. By the conditions (1) and (2) and Theorem 2.1, we have that
g(x;)=0and g'(y;)=0fori=1,2,.,m;j=12, .,k

In the case (3), we count the zeroes of ¢'(x). Since ¢"(y;)=0 for
y;€(a, b), ¢'(x) has at least two zeroes at y, for y, e (a, b) and ¢'(x) has at
least 2k — e zeroes at y, .., ;. As to x,, .., X,,, Without loss of generality,
we assume x; < x,... < x,, and g Z 0. Since g(x;)=q¢(x;,,)=0, ¢'(x) has at
least one zero z in (x;, X;, ), which is different from any y; (j=1, 2, .., k),
or there is y; such that g'(x) has at least three zeroes at y;. In fact, if
otherwise, ¢'(x) has two zeroes at any y;, and ¢'(x)#0 for any x in
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(x;, x;01)and x#y, (j=1,2, .., k). Then ¢'(x) 20 on (x;, x;, ;) by Taylor
expansion of ¢’(x). This implies gq(x)=0, which is a contradiction. Hence
¢’(x) has at least m — 1 + 2k — e zeroes in [a, b]. This implies that ¢'(x}=0
since m—1+2k—e>2n+1, and so ¢g(x)=0.

In the case (3"), p;(x) has at most one simple zero, y. Since p,(x) is a
monotone function, y=a or b and k=e, which implies that g(x) has
mzn+2—2k+ez=n+1 zeroes. So g(x)=0 and the proof is complete.

Lemma 3.2, If the best approximation to fin RY is ry=djp, (d=1 or
1), re=dy/p.c R} (d, =1 or —1) such that

If=rl >0 =rdl, koo
then there is a sequence {r.} (denoted by itself) such that
r.=d/p, and Pi— Py k— .

Proof. Without loss of generality, we assume that d=1. Since
|.f—rell = Il f = r/l when k - oo, then d; =1 for sufficiently large . In fact,
if otherwise, there is a x,& [a, b] with f(xo)=1lf. So

If = (= 1)pill = fx0) + Vi (x0) > fxo) = | /1]

and

Wo=rdl = =rAd=> 1 0= =rd >0

which contradicts || f —r.|l = | f —r | when k — cc.

Since |f—rll=lIf—rdl, {llrl} is bounded, then J=inf{p,(x):
k=1,2,3,..} >0. Since {p,/llp.ll} and {1/ pil} are bounded, we may
assume that p, /|| pll — ¢g(x) and 1/| p,|| — a for some g(x)e n, and a. Then
for any xe€ A(f, ry),

(g —ap)(x)=hm(p, /| pill — pr/ll Pl )(x)
<lim(p, p () picll - TS = rill = 1 —r ]

=0.
On the other hand, since ¢'(x)<0 on [qa, b] by p;(x) <0 on [aq, b], then
(g—ap) ((x)<0,  xeB(r,)

and if xe B(r;)n (a, b) and (g—ap,)’ (x)=0, then ¢'(x)=0 and ¢"(x)=0.
Then

(g—ap;)"=0
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by p/(x)=0. Using Lemma 3.1, we have that

q—ap,=0
and
py=q/a=lim p,

since ||g|| =1 and a#0. The proof is complete.

THEOREM 3.1. Assume fe Cla, b], ry=d/p,e R¥ (d=1 or —1) is a best
approximation to fin R¥. If dp,< 2, then r, is strongly unique; that is, there
exists y >0 such that

W =rlZ 0 =rd +yllr—rll

for any re RY¥.

Proof. Without loss of generality, we prove the theorem only for the
case d=1. Suppose there was a sequence {r,} in R¥, r,=d,/p, such that

R(ro=U/S=rl =1 =rdlVlri—rd -0

when k — co. Since R(r)=1=2[f—rdl/lr—rdl, {llre—r/} is bounded,
this concludes that |{f—r| — | f—r/]. By Lemma 3.2, there is a sub-
sequence {r,}, denoted by itself again, such that r,=1/p, and p,— p,
when k — o0, Let

C=inf{ max [—o(x)(p,—h)x)/Ip,—hiT:

x€ AU S rp)

hem,, |p—hl#0, k'(x)<O0forall xe [a, b1},

then C> 0. In fact, if C <0, there is A, € n,, with 4, <0for m=1, 2, ... such
that

lim max{ —o(x)}(pr— hu)(x)/ | py=hull : x € A/, 1)} <O.

Then there exists a subsequence of {(p,— h,,)/| py— h, | }, denoted by itself,
and g em, such that

(pr—h )/ ps—hull—q  when k- co.
Hence
a(x)g(x) =0, xeA(f, ry)

q(x)=20, xeB(r)
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if dp,> 1, g(x) satisfies the conditions (1), (2), and (3°) in Lemma 3.1, and
g(x)=0.1f dp,=0, p,is a constant, and g(x) is monotone, then ¢"(x)=0
for any xe B(r;)n(a, b) and ¢'(x)=0. Again by Lemma 3.1, ¢(x)=0,
which contradicts |g|| = 1. So C > 0. But on the other hand, for any & there
exists x& A(f, ;) such that
R(ri) =z o(x)(pi— Pf)(x)/[ I7re — "f” Pi(x) Pf(x)]
2 Clpe— pAI/UIre—rAl pe(x} pp(x)]
2 C/UN/pipA pi(x) pr(x)].

Let

Then for sufficiently large &,

2

d
min p(x) 25, Ipd <M, and  RO)25>0

[a.5] 2

which contradicts that R(r,) — 0 when k£ — co. The proof is complete.

4. STRONG UnNiCITY OF ORDER 1/2

Suppose r,=d/p,e R} (d=1 or —1)is a best approximation to fin R}.
For any gen,,, define

lgl"=max{|g(x)l, |g'(»)|: x€A,, ye B},

where A, ={x;, X3, .. Xy} A(f, 7)), By={y, ¥3, ., ¥1} < B(ry) such
that 4, and B, satisfy (1). |||’ is a seminorm in =, and by Markov’s
inequality [8] we can easily get that, for any g in =n,, [[gl'< M| gl for
some constant M > 0.

THEOREM 4.1. Suppose fe Cla, b] with max{f(x): xe [a b]} #
—min{f(x): xe[a, b]}, r, is a best approximation to f in R¥. Then r, is
strongly unique of order 1/2, that is, for any N> 0, there is 7y >0 such that

Lf=rl 20 =rd +vlr—~ri?
Sfor any r in R} with ||r—r ] <N.

Proof. When n=0 or fe R*, the result is true. Now we assume that
n>0 and f¢ R} In this case, the best approximation r,=d/p, (d= —1
or 1)



28 YANG AND LI

Again, we prove this only for d=1, since the case d= -1 is similar. For
any N>0, let

n.(f, Ny={pen,: p(x)<N for any xe[a,b]}
LemMMA 4.1. For any N >0, there is p >0 such that

Wf=rliZIf—rd+plp—pl
for any r=dijpe R¥ (d=1or —1Ywithpen,(f, N).

Proof. Suppose thereisr,=d,/p,e R¥ (d=1or ~1}and p,en,(f, N)
such that when &k — o0

R(r)=US=rdl = IS =rd ) pe— pAl" =0,

then {|lp,—pdl’} is bounded by Markov’s inequality. So (f—rf —
I f—r/l. By Lemma 3.2, there is a subsequence {r,} (denoted by itself),
such that p, — p,. Let

w1t I NS

C= inf{ max
xeAf, 7)) ]ipf—h]]'

h'(x}<0 for all xe [a, b] and hen,,},

and with the same techniques as in the proof of Theorem 3.1 we get C > 0.
Thus, for any k=1, 2, ..., there is x€ A(/, r,) such that

a(x)(pi — pr)x)
lPe— Pf”' (pi Pf)(x)
C
> s
(Prp(X)

which contradicts R'(r,) —»0 when k— oc. The proof of Lemmad4.1 is
complete.

R(r)z

Now let’s go back to the proof of Theorem 4.1. We prove that

==l =

”"_"_/"2

R(r)

has positive lower bound in {re R¥:|r—r <N}. If not, there exists a
sequence {r,}e R} with |r, —r{ <N such that R(r;) — 0. Then again by
Lemma 3.2, there is a subsequence of {r.}, denoted by itself again, such
that r,=1/p, and p, — p, when k- cc. Appealing to the proof in [3,
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Theorem 3.4], we obtain that [ p, — p,I>< M, |[p, — p/I’ for some constant
M, . Since p; — p,, ry € RY, pren,(f, N,) for some N, then by Lemma 4.1
there exists a p > 0 such that

Nf=rh 20—+ plipe — PA

forany k=1,2,... So
R(’k)?P“Pk’l’f‘[’/“"k“rfﬂz
> Mi Pk — P e = A

pd’
oM,

when k — oc, which contradicts R(r,) — 0 and proves the theorem.
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